Time series clustering in large data sets
نویسندگان
چکیده
منابع مشابه
YADING: Fast Clustering of Large-Scale Time Series Data
Fast and scalable analysis techniques are becoming increasingly important in the era of big data, because they are the enabling techniques to create real-time and interactive experiences in data analysis. Time series are widely available in diverse application areas. Due to the large number of time series instances (e.g., millions) and the high dimensionality of each time series instance (e.g.,...
متن کاملClustering of Time Series Data
Time series data is of interest to most science and engineering disciplines and analysis techniques have been developed for hundreds of years. There have, however, in recent years been new developments in data mining techniques, such as frequent pattern mining, which take a different perspective of data. Traditional techniques were not meant for such pattern-oriented approaches. There is, as a ...
متن کاملSoft Clustering for Very Large Data Sets
Clustering is regarded as one of the significant task in data mining and has been widely used in very large data sets. Soft clustering is unlike the traditional hard clustering which allows one data belong to two or more clusters. Soft clustering such as fuzzy c-means and rough k-means have been proposed and successfully applied to deal with uncertainty and vagueness. However, the influx of ver...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
سال: 2014
ISSN: 1211-8516,1211-8516
DOI: 10.11118/actaun201159020075